Bifurcation Analysis of Elliptic Equations Described by Nonhomogeneous Differential Operators

نویسندگان

  • HABIB MÂAGLI
  • RAMZI ALSAEDI
  • NOUREDDINE ZEDDINI
  • Vicentiu D. Radulescu
چکیده

In this article, we are concerned with a class of nonlinear partial differential elliptic equations with Dirichlet boundary data. The key feature of this paper consists in competition effects of two generalized differential operators, which extend the standard operators with variable exponent. This class of problems is motivated by phenomena arising in non-Newtonian fluids or image reconstruction, which deal with operators and nonlinearities with variable exponents. We establish an existence property in the framework of small perturbations of the reaction term with indefinite potential. The mathematical analysis developed in this paper is based on the theory of anisotropic function spaces. Our analysis combines variational arguments with energy estimates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bifurcation of Positive Solutions for Nonlinear Nonhomogeneous Robin and Neumann Problems with Competing Nonlinearities

In this paper we deal with Robin and Neumann parametric elliptic equations driven by a nonhomogeneous differential operator and with a reaction that exhibits competing nonlinearities (concave-convex nonlinearities). For the Robin problem and without employing the Ambrosetti-Rabinowitz condition, we prove a bifurcation theorem for the positive solutions for small values of the parameter λ > 0. F...

متن کامل

The spectral properties of differential operators with matrix coefficients on elliptic systems with boundary conditions

Let $$(Lv)(t)=sum^{n} _{i,j=1} (-1)^{j} d_{j} left( s^{2alpha}(t) b_{ij}(t) mu(t) d_{i}v(t)right),$$ be a non-selfadjoint differential operator on the Hilbert space $L_{2}(Omega)$ with Dirichlet-type boundary conditions. In continuing of papers [10-12], let the conditions made on the operator $ L$ be sufficiently more general than [11] and [12] as defined in Section $1$. In this paper, we estim...

متن کامل

Bifurcation of limit cycles from a quadratic reversible center with the unbounded elliptic separatrix

The paper is concerned with the bifurcation of limit cycles in general quadratic perturbations of a quadratic reversible and non-Hamiltonian system, whose period annulus is bounded by an elliptic separatrix related to a singularity at infinity in the poincar'{e} disk. Attention goes to the number of limit cycles produced by the period annulus under perturbations. By using the appropriate Picard...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017